Effects of the Hydro Anisotropy and the Magnetic Field on the Dynamic Thermo-Bi-Diffusive Flow in a Horizontal Cavity Confining a Porous Medium Saturated by a Binary Fluid

Abstract
We analyze analytically the effects of anisotropy in permeability and that of a transverse magnetic field on thermal convection in a porous medium saturated with a binary fluid and confined in a horizontal cavity. The porous medium, of great extension, is subjected to various conditions at the thermal and solutal boundaries. The axes of the permeability tensor are oriented obliquely with respect to the gravitational field. Based on a scale analysis, the velocity, temperature, and heat and mass transfer rate fields were determined. These results were validated by the study of borderline cases which are: pure porous media and pure fluid media discussed in the literature. It emerges from this study that the anisotropy parameters influence the convective flow. The application of a transverse magnetic field significantly reduces the speed of the flow and thereby affects the temperature field and the rate of heat and mass transfer.