Record thermopower found in an IrMn-based spintronic stack

Abstract
The Seebeck effect converts thermal gradients into electricity. As an approach to power technologies in the current Internet-of-Things era, on-chip energy harvesting is highly attractive, and to be effective, demands thin film materials with large Seebeck coefficients. In spintronics, the antiferromagnetic metal IrMn has been used as the pinning layer in magnetic tunnel junctions that form building blocks for magnetic random access memories and magnetic sensors. Spin pumping experiments revealed that IrMn Neel temperature is thickness-dependent and approaches room temperature when the layer is thin. Here, we report that the Seebeck coefficient is maximum at the Neel temperature of IrMn of 0.6 to 4.0nm in thickness in IrMn-based half magnetic tunnel junctions. We obtain a record Seebeck coefficient 390 (10) V K-1 at room temperature. Our results demonstrate that IrMn-based magnetic devices could harvest the heat dissipation for magnetic sensors, thus contributing to the Power-of-Things paradigm. Antiferromagnetic materials are potentially useful for spintronic applications. Here, the authors report high thermoelectric power value of 390 mu V/K Seebeck coefficient in IrMn-based half magnetic tunnel junctions at room temperature.
Funding Information
  • National Natural Science Foundation of China (11674020, U1801661)
  • Ministry of Science and Technology of the People's Republic of China (2016YFA0300802, 2017YFA0206200, 2016YFA0300802, 2016YFA0300802, 2017YFA0206200)
  • Ministry of Science and Technology of the People's Republic of China
  • Ministry of Science and Technology of the People's Republic of China
  • Ministry of Science and Technology of the People's Republic of China
  • Ministry of Science and Technology of the People's Republic of China