Baseline Susceptibility of a Laboratory Strain of Northern Corn Rootworm, Diabrotica barberi (Coleoptera: Chrysomelidae) to Bacillus thuringiensis Traits in Seedling, Single Plant, and Diet-Toxicity Assays

Abstract
The northern corn rootworm (NCR), Diabrotica barberi Smith & Lawrence, is an economic pest of maize in the U.S. Corn Belt. The objective of this study was to determine the baseline susceptibility of a laboratory NCR strain to Bt proteins eCry3.1Ab, mCry3A, Cry3Bb1, and Cry34/35Ab1 using seedling, single plant, and diet-toxicity assays. Plant assays were performed in greenhouse using corn hybrids expressing one of the Bt proteins and each respective near-isoline. Diet-toxicity assays, consisting of Bt proteins overlaid onto artificial diet were also conducted. In both plant assays, significantly more larvae survived Cry34/35Ab1-expressing corn compared with all other Bt-expressing corn, and larvae that survived eCry3.1Ab-expressing corn had significantly smaller head capsule widths compared with larvae that survived Cry34/35Ab1-expressing corn. In seedling assays, larvae surviving eCry3.1Ab-expressing corn also had significantly smaller head capsule widths compared with larvae that survived mCry3A-expressing corn. Additionally, larvae that survived mCry3A-expressing corn weighed significantly more than larvae surviving eCry3.1Ab- and Cry34/35Ab1-expressing corn. In single plant assays, no significant differences in larval dry weight was observed between any of the Bt-expressing corn. In diet assays, LC50s ranged from 0.14 (eCry3.1Ab) to 10.6 µg/cm2 (Cry34/35Ab1), EC50s ranged from 0.12 (Cry34/35Ab1) to 1.57 µg/cm2 (mCry3A), IC50s ranged from 0.08 (eCry3.1Ab) to 2.41 µg/cm2 (Cry34/35Ab1), and MIC50s ranged from 2.52 (eCry3.1Ab) to 14.2 µg/cm2 (mCry3A). These results establish the toxicity of four Bt proteins to a laboratory diapausing NCR strain established prior to the introduction of Bt traits and are important for monitoring resistance evolution in NCR field populations.
Funding Information
  • University of Missouri