Experimental Analysis on the Thermal Management of Lithium-Ion Batteries Based on Phase Change Materials

Abstract
Temperature is an important factor affecting the working efficiency and service life of lithium-ion battery (LIB). This study carried out the experiments on the thermal performances of Sanyo ternary and Sony LiFePO4 batteries under different working conditions including extreme conditions, natural convection cooling and phase change material (PCM) cooling. The results showed that PCM could absorb some heat during the charging and discharging process, effectively reduce the temperature and keep the capacity stable. The average highest temperature of Sanyo LIB under PCM cooling was about 54.4 °C and decreased about 12.3 °C compared with natural convection in the 2 C charging and discharging cycles. It was found that the addition of heat dissipation fins could reduce the surface temperature, but the effect was not obvious. In addition, the charge and discharge cycles of the two kinds of LIBs were compared at the discharge rates of 1 C and 2 C. Compared with natural convection cooling, the highest temperature of Sanyo LIB with PCM cooling decreased about 4.7 °C and 12.8 °C for 1 C and 2 C discharging respectively, and the temperature of Sony LIB highest decreased about 1.1 °C and 2 °C.
Funding Information
  • Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (19KJB620003)