The analysis of failure and reliability factors of impressed current cathodic protection (ICCP) design toward underwater line of warship (Case study in kri kcr-40 type)

Abstract
EASL-Vol. 2 (2019), Issue 4, pp. 45 - 56 Open Access Full-Text PDF Nengah Putra, Romie Oktovianus Bura, Sovian Aritonang, Djoko Navalino, Joni Widjayanto Abstract: Corrosion at the bottom of a ship's water line can result in personnel and material safety risks. There are 2 (two) ways to protect against corrosion, they are passive protection (by painting) and active protection (by cathodic protection method). In the KRI with KCR-40 type, the design of the bottom line of the ship's waterline protection has been carried out with ICCP, but the value of its failure risk and reliability is unknown, both functional and designs, so that the design of the tool cannot be used maximally. This research aimed to determine the factors of failure and reliability value of the design-based ICCP (Reliability by Design) with the FTA and FMEA approach, the FTA aimed to identify the risks that contribute to the failure. The main factors causing failure in the design of ICCP tools occur in the component of Steel potential indicator and rectifier indicator with a failure mode not pointing to the correct number, this will result in corrosion control which is expected to be uncontrolled properly and correctly due to incorrect data input. After analyzing the FTA, the reliability value was 33%. Mitigation of tool components that have a high level of risk among other things in the indicator of steel potential and rectifier indicators: the first was to redesign the laying of some components of the tool compilers to pay attention to the circulating circulation in the box so that the tool works more optimally, the second was to carry out periodic control while the device was operating, and third was to ensure that the electrical power used was stable so there were no problems with the ICCP device while the ICCP device was operating.