Hydrodynamics of a reactor with updated structure of frame mixing device

Abstract
This article is devoted to computer simulation of the hydrodynamic situation in a reactor with a standard design and an upgraded design of a frame stirrer. A comparative analysis of the hydrodynamics of fluid flows occurring in the volume due to the use of classical and modernized design was performed. An upgraded design of a frame stirrer for homogenizing the medium in a reactor has been proposed. The aim of this work was to study the influence of the geometry of the stirrer blades and their location in space on the speed and direction of flows in the reactor. The basis for the new design of the mixing device was the standard design of the frame mixer with two horizontal jumpers. Installation of additional blades and their placement at a certain angle to the vertical and horizontal planes and relative to each other was considered as one of the methods of improving the design. For this work, the study was conducted in the universal software system of finite element analysis ANSYS. Computer simulation is used to analyze complex systems and processes based on a computer model. The simulation was performed to analyze the influence of the geometry of the mixing device on the speed and direction of fluid flow in the apparatus. To conduct the study, 3D-models of two different types of geometry of the mixing device were built, physicomechanical parameters of the environment in the reactor were set and on the basis of these data the mixing process in the apparatus was modeled. In this work, the influence of plate geometry and their location in space on hydrodynamics is investigated. The basis of the proposed design of the mixing device is the task of intensifying the mixing process by increasing the mixing efficiency along the height of the apparatus. A comparative analysis of the direction of fluid flow, its velocity and temperature change using a standard and upgraded design of the mixing device was performed. It was found that when installing additional plates that are located at an angle to the horizontal and vertical planes in the reactor there are additional axial and radial fluid flows, which improves homogeneity and increases the intensity of mixing.