Abstract
Cold drawn calibrated steel is an effective blank for the manufacture of low-rigid cylindrical parts such as shafts and axles. High accuracy of the diametric size along the length of the workpiece, low surface roughness, increased hardness and strength of the surface layer compared to hot rolled products allow us to produce a variety of parts with high metal utilization and high machining performance. The main disadvantage of calibrated metal is the residual stresses that occur during pressure treatment. To reduce or change the nature of the distribution over the cross section, it is proposed to use small plastic deformations in the surface layer of the hire. Known in practice methods of surface plastic deformation (PPD) usually lead to the curvature of non-rigid workpieces. To intensify the stress-strain state in the deformation zone, we propose a method of orbital surface deformation. Based on the finite element modeling, influence of the main parameters of orbital surface deformation on stress state in the deformation zone and residual stresses in the finished products is considered. Compared with the traditional PPD process, the stress intensity during orbital surface deformation will increase by 10 – 15 %. The residual compressive stresses that form in the surface layers reach 70 – 85 % of the material tensile strength. In the second part of the article, it is supposed to provide information on a more effective method of surface deformation and on the change in initial residual stresses that are formed during the calibration of cylindrical rods.

This publication has 5 references indexed in Scilit: