A Treatment Combination of IGF and EGF Promotes Hair Growth in the Angora Rabbit

Abstract
The hair follicle (HF) growth cycle is a complex, multistep biological process, for which dysfunction affects hair-related diseases in humans and wool production in animals. In this study, a treatment combination of 10 ng/mL insulin-like growth factor-1 (IGF-1) and 20 ng/mL epidermal growth factor (EGF) significantly increased the elongation length of hair shafts for cultured HFs. The combined treatment of IGF-1 and EGF enhanced the proliferation of HFs and promoted HF growth and development in vitro. In vivo, the combined treatment of IGF-1 and EGF was subcutaneously injected into the dorsal skin in HF synchronized rabbits. The IGF-1 and EGF combination promoted the transition of the hair cycle from telogen to anagen and stimulated the growth of hair shafts. This IGF-1 and EGF combination maintained the structure of the HF and enhanced the cell proliferation of outer root sheaths and the dermal papilla within rabbit skin. The combined treatment of IGF-1 and EGF regulated HF-related genes, including LEF1, CCND1 and WNT2, suggesting that IGF-1 and EGF play a positive role in HF growth and development. Utilization of the combined IGF-1 and EGF treatment may assist with hair and wool production and HF related diseases in mammals.