Respiratory and Gut Microbiota in Commercial Turkey Flocks with Disparate Weight Gain Trajectories Display Differential Compositional Dynamics

Abstract
Communities of gut bacteria (microbiota) are known to play roles in resistance to pathogen infection and optimal weight gain in turkey flocks. However, knowledge of turkey respiratory microbiota and its link to gut microbiota is lacking. This study presents a 16S rRNA gene-based census of the turkey respiratory microbiota (nasal cavity and trachea) alongside gut microbiota (cecum and ileum) in two identical commercial Hybrid Converter turkey flocks raised in parallel under typical field commercial conditions. The flocks were housed in adjacent barns during the brood stage and in geographically separated farms during the grow-out stage. Several bacterial taxa that were acquired in the respiratory tract at the beginning of the brood stage persisted throughout the flock cycle, primarily Staphylococcus. Late-emerging predominant taxa in the respiratory tract included Deinococcus and Corynebacterium. Tracheal and nasal microbiota of turkeys were identifiably distinct from one another and from gut microbiota. Nevertheless, gut and respiratory microbiota changed in parallel over time and appeared to share many taxa. During the brood stage, the two flocks generally acquired similar gut and respiratory microbiota, and their average body weights were comparable. However, there were qualitative and quantitative differences in microbial profiles and body weight gain trajectories after the flocks were transferred to geographically separated grow-out farms. Lower weight gain corresponded with emergence of Deinococcus and Ornithobacterium in the respiratory tract, and Fusobacterium and Parasutterella in gut. This study provides an overview of turkey microbiota under field conditions and suggests several hypotheses concerning the respiratory microbiome. IMPORTANCE Turkey meat is an important source of animal protein, and the industry around its production contributes significantly to the agricultural economy. The microorganisms present in the gut of turkeys are known to impact bird health and flock performance. However, the respiratory microbiota in turkeys are entirely unexplored. This study has elucidated the microbiota of respiratory tracts of turkeys from two commercial flocks raised in parallel throughout a normal flock cycle. Further, the study suggests that bacteria originating in the gut or in poultry house environments may influence respiratory communities; and consequently, induce poor performance, either directly or indirectly. Future attempts to develop microbiome-based interventions for turkey health should delimit the contributions of respiratory microbiota and aim to limit disturbances to those communities.
Funding Information
  • USDA | National Institute of Food and Agriculture (2015-68004-23131)