Long-term sensitization training in Aplysia decreases the excitability of a decision-making neuron through a sodium-dependent mechanism

Abstract
In Aplysia, long-term sensitization (LTS) occurs concurrently with a suppression of feeding. At the cellular level, the suppression of feeding is accompanied by decreased excitability of decision-making neuron B51. We examined the contribution of voltage-gated Na+ and K+ channels to B51 decreased excitability. In a pharmacologically isolated Na+ channels environment, LTS training significantly increased B51 firing threshold, compared with untrained controls. Conversely, in a pharmacologically isolated K+ channels environment, no differences were observed between trained and untrained animals in either amplitude or area of B51 K+-dependent depolarizations. These findings suggest that Na+ channels contribute to the decrease in B51 excitability induced by LTS training.
Funding Information
  • National Science Foundation (IOS-1120304)
  • Texas Research Development (140130-10090)
  • Graduate Summer Research Development Program