Triboelectric Nanogenerator-Based Near-Field Electrospinning System for Optimizing PVDF Fibers with High Piezoelectric Performance

Abstract
Electrospinning is an effective method to prepare polyvinylidene fluoride (PVDF) piezoelectric fibers with a high percentage fi phase. However, as an energy conversion material for micro-and nanoscale diameters, PVDF fibers have not been widely used due to their disordered arrangement prepared by traditional electrospinning. Here, we designed a near-field electro-spinning (NFES) system driven by a triboelectric nanogenerator (TENG) to prepare PVDF fibers. The effects of five important parameters (PVDF concentration, needle inner diameter, TENG pulse DC voltage (TPD-voltage), flow rate, and drum speed) on the fi phase fraction of PVDF fiber were optimized one by one. The results showed that the electrospun PVDF fibers had uniform diameter and controllable parallel arrangement. The fi phase content of the optimized PVDF fiber reached 91.87 +/- 0.61%. For the bending test of a single PVDF fiber piezoelectric device, when the strain is 0.098%, the electric energy of the single PVDF fiber device of NFES reaches 7.74 pJ and the energy conversion efficiency reaches 13.5%, which is comparable to the fibers prepared by the commercial power-driven NFES system. In 0.5 Hz, the best matching load resistance of a PVDF single fiber device is 10.6 MCI, the voltage is 6.1 mV, and the maximum power is 3.52 pW. Considering that TENG can harvest micromechanical energy in the low frequency environment, the application scenario of the NFES system can be extended to the wild or remote mountainous areas without traditional high-voltage power supply. Therefore, the electrospun PVDF fibers in this system will have potential applications in high-precision 3D fabrication, self-powered sensors, and flexible wearable electronic products.
Funding Information
  • National Natural Science Foundation of China (51901001)
  • Natural Science Foundation of Anhui Province (2008085MF221, 2208085J16)
  • Anhui Province (2020H209)