Myco-Fabrication of Copper Nanoparticles and Its Effect on Crop Pathogenic Fungi

Abstract
Phytopathogens are responsible for huge losses in the agriculture sector. Amongst them, fungal phytopathogen is quite difficult to control. Many chemicals are available in the market, claiming the high activity against them. However, the development of resistance bythe fungal pathogen is the main concern to overcome their menace. Nanotechnology-based products can be a potential alternative to conventional fungicides. Amongst various nanoparticles, Copper nanoparticles (CuNPs) are appearing to be a promising antifungal candidate. It can be synthesized by various methods, but the myco-fabrication appears to be an environmental-friendly approach. Hence, the present study is an attempt to synthesizeCuNPs using Aspergillusflavus. The myco-fabricatedCuNPs were characterized by UV spectrophotometer, Fourier transform infrared spectroscopy (FTIR), Nanoparticles tracking and analysis system (NTA), Transmission Electron Microscopy (TEM), X-ray diffraction (XRD) and Zeta potential measurement. Myco-fabricated CuNPs showed maximum absorbance at 602 nm and particle size ranging 5-12 nm with the least average size of 8 nm with spherical shape and moderate stability. Myco-fabricated CuNPs tested against selected fungal crop pathogens viz. Aspergillusniger, Fusariumoxysporum, andAlternariaalternata reveal a significant effect. Besides these we have given the hypothetical mechanism depicting the antifungal action of myco-fabricated CuNPs.