The B-cell inhibitory receptor CD22 is a major factor in host resistance to Streptococcus pneumoniae infection

Abstract
Streptococcus pneumoniae is a major human pathogen, causing pneumonia and sepsis. Genetic components strongly influence host responses to pneumococcal infections, but the responsible loci are unknown. We have previously identified a locus on mouse chromosome 7 from a susceptible mouse strain, CBA/Ca, to be crucial for pneumococcal infection. Here we identify a responsible gene, Cd22, which carries a point mutation in the CBA/Ca strain, leading to loss of CD22 on B cells. CBA/Ca mice and gene-targeted CD22-deficient mice on a C57BL/6 background are both similarly susceptible to pneumococcal infection, as shown by bacterial replication in the lungs, high bacteremia and early death. After bacterial infections, CD22-deficient mice had strongly reduced B cell populations in the lung, including GM-CSF producing, IgM secreting innate response activator B cells, which are crucial for protection. This study provides striking evidence that CD22 is crucial for protection during invasive pneumococcal disease. Author summary Streptococcus pneumoniae (known as the pneumococcus) is a human bacterial pathogen responsible for diseases such as pneumonia and sepsis, that cause illness and death in millions of individuals. Susceptibility to pneumococcal infections is associated with genetic components that strongly influence how infected individuals respond to infection, but little is known about the causal gene(s) and the mechanisms of control of the infection. In previous studies we have found strong differences in susceptibility and resistance to pneumococcal infections between mouse strains. In this study we identified a gene, the Cd22 gene, that controls resistance to pneumococcal infection. Mice without the B-cell specific CD22 protein were much more susceptible to infection with S. pneumoniae. We could show that a protective population of B cells that migrates to the lung during pneumococcal infection is missing in Cd22-deficient mice. The study shows to a new role for CD22 and indicates a new potential target for treatment of pneumococcal infections.