Vascular resistance arm of the baroreflex: methodology and comparison with the cardiac chronotropic arm

Abstract
Baroreflex response consists of cardiac chronotropic (effect on heart rate). cardiac inotropic (on contractility), venous (on venous return) and vascular (on vascular resistance) arms. Because of the simplicity of its measurement, the cardiac chronotropic arm is most often analyzed. The aim was to introduce a method to assess the vascular baroreflex arm and to characterize its changes during stress. We evaluated the effect of orthostasis and mental arithmetics (MA) in 39 (22 women, 17 men; median age: 18.7 yr) and 36 (21 women. 15 men: 19.2 yr) healthy volunteers, respectively. We recorded systolic (SBP) and mean (MBP) blood pressure by volume-clamp method and R-R interval (RR) by ECG. Cardiac output (CO) was recorded by impedance cardiography. From MBP and CO, peripheral vascular resistance (PVR) was calculated. The directional spectral coupling and gain of cardiac chronotropic (SBP to RR) and vascular (SBP to PVR) arms were quantified. The strength of the causal coupling from SBP to PVR was significantly higher than that of SBP to RR coupling over the whole protocol (P < 0.001). Along both arms, the coupling was higher during orthostasis compared with the supine position (P < 0.001 and P = 0.006); no MA effect was observed. No significant changes in the spectral gain (ratio of RR or PVR change to a unit SBP change) across all phases were found (0.111 <= P <= 0.907). We conclude that changes in PVR are tightly coupled with SBP oscillations via the baroreflex, providing an approach for baroreflex vascular arm analysis with the potential to reveal new aspects of blood pressure dysregulation. NEW & NOTEWORTHY Baroreflex response consists of several arms, but the cardiac chronotropic arm (blood pressure changes evoking heart rate response) is usually analyzed. This study introduces a method to assess the vascular baroreflex arm with the continuous noninvasive measurement of peripheral vascular resistance as an output considering causality in the interaction between oscillations and slower dynamics of vascular tone changes. We conclude that although vascular baroreflex arm involvement becomes dominant during orthostasis, gain of this interaction is relatively stable.