Abstract
Building energy simulation programs are used for optimal sizing of building systems to reduce excessive energy wastage. Such programs employ thermo-dynamic algorithms to estimate every aspect of the target building with a certain level of accuracy. Currently, almost all building simulation tools capture static features of a building including the envelope, geometry, and Heating, Ventilation, and Air Conditioning (HVAC) systems, etc. However, building performance also relies on dynamic features such as occupants’ interactions with the building. Such interactions have not been fully implemented in building energy simulation tools, which potentially influences the comprehensiveness and accuracy of estimations. This paper discusses an information exchange mechanism via coupling of EnergyPlus™, a building energy simulation engine and PMFServ, an occupant behavior modeling tool, to alleviate this issue. The simulation process is conducted in Building Controls Virtual Testbed (BCVTB), a virtual simulation coupling tool that connects the two separate simulation engines on a time-step basis. This approach adds a critical dimension to the traditional building energy simulation programs to seamlessly integrate occupants’ interactions with building components to improve the modeling capability, thereby improving building performance evaluation. The results analysis of this paper reveals a need to consider metrics that measure different types of comfort for building occupants.