DELINEATION OF ECG FEATURE EXTRACTION USING MULTIRESOLUTION ANALYSIS FRAMEWORK

Abstract
ECG signals have very features time-varying morphology, distinguished as P wave, QRS complex, and T wave. Delineation in ECG signal processing is an important step used to identify critical points that mark the interval and amplitude locations in the features of each wave morphology. The results of ECG signal delineation can be used by clinicians to associate the pattern of delineation point results with morphological classes, besides delineation also produces temporal parameter values of ECG signals. The delineation process includes detecting the onset and offset of QRS complex, P and T waves that represented as pulse width, and also the detection of the peak from each wave feature. The previous study had applied bandpass filters to reduce amplitude of P and T waves, then the signal was passed through non-linear transformations such as derivatives or square to enhance QRS complex. However, the spectrum bandwidth of QRS complex from different patients or same patient may be different, so the previous method was less effective for the morphological variations in ECG signals. This study developed delineation from the ECG feature extraction based on multiresolution analysis with discrete wavelet transform. The mother wavelet used was a quadratic spline function with compact support. Finally, determination of R, T, and P wave peaks were shown by zero crossing of the wavelet transform signals, while the onset and offset were generated from modulus maxima and modulus minima. Results show the proposed method was able to detect QRS complex with sensitivity of 97.05% and precision of 95.92%, T wave detection with sensitivity of 99.79% and precision of 96.46%, P wave detection with sensitivity of 56.69% and precision of 57.78%. The implementation in real time analysis of time-varying ECG morphology will be addressed in the future research.