New Search

Export article
Open Access

Design of Shallow Neural Network Based Plant Disease Detection System

Fatai O. Sunmola, Olaide A. Agbolade

Abstract: — In this work, we proposed the use of a shallow neural network for plant disease detection. The study focuses on four major diseases that are known to attack some of the most cultivated crops globally. The diseases considered include Bacterial Blight, Anthracnose, Cercospora leaf spot and Alternaria Alternata. In developing the disease detection model, K-means algorithm was used for plant segmentation while color co-occurrence method was used for feature analysis. A shallow neural network trained on 145 training samples was used as a classifier. The detection accuracy of 98.34 %, 98.48%, 98.03% and 98.14% were recorded for Bacterial Blight, Anthracnose, Cercospora leaf spot and Alternaria Alternata diseases respectively. The overall detection accuracy of the model is 98.25%.
Keywords: shallow neural network / disease detection / model / Anthracnose / Alternata / Alternaria / Cercospora

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Back to Top Top