Immune profiling of pituitary tumors reveals variations in immune infiltration and checkpoint molecule expression

Abstract
Purpose Pituitary tumors are the second most common primary brain tumors. Functional tumors demonstrate increased PD-L1 expression, but expression of other checkpoint regulators has not been characterized. We sought to characterize the immune microenvironment of human pituitary tumors to identify new treatment opportunities. Methods 72 pituitary tumors were evaluated for expression of the immune regulatory markers programmed death ligand 1 (PD-L1), programmed death ligand 2 (PD-L2), V-domain Ig suppressor of T cell activation (VISTA), lymphocyte activation gene 3 (LAG3) and tumor necrosis factor receptor superfamily member 4 (OX40) by immunohistochemistry (IHC). Lymphocyte infiltration, macrophage infiltration, and angiogenesis were analyzed using IHC. Expression of pituitary tumor initiating cell marker CD15 and mismatch repair proteins MutS protein homolog 2 (MSH2) and MutS protein homolog 6 (MSH6) was also assessed. Results Pituitary tumors were infiltrated by macrophages and T cells, and they expressed varying levels of PD-L1, PD-L2, VISTA, LAG3, and OX40. Functional tumors and tumors with high expression of tumor stem cell markers had higher immune cell infiltration and greater expression of immunosuppressive checkpoint regulators. Increased PD-L1 and LAG3 and reduced VISTA were observed in primary tumors compared to recurrent tumors. Conclusion Immune cell infiltration and checkpoint regulator expression vary depending on functional status and presence of pituitary tumor initiating cells. Functional tumors may have a particularly immunosuppressive microenvironment. Further studies of immune checkpoint blockade of pituitary tumors, particularly functional tumors, are warranted, though combination therapy may be required.
Funding Information
  • King Abdulaziz City for Science and Technology