Abstract
The PeTa (Perelman-Tatartchenko) effect is the radiation of the energy of a first-order phase transition during the transition from a less condensed phase to a more condensed one. The effect was independently discovered by M. Perelman and the author of this paper. Six papers on the PeTa effect have been published in this journal over the past nine years. They are devoted to the development of PeTa models to explain the following phenomena: IR radiation from cold surfaces, cavitation luminescence/sonoluminescence (CL/SL), laser-induced bubble luminescence (LIBL), and vapor bubble luminescence (VBL) in underwater geysers. This paper describes the sources of PeTa radiation in the Earth’s atmosphere. These sources of infrared radiation have been investigated by numerous research groups, but their interpretation either does not exist at all, or it is erroneous. The following phenomena are specifically considered: PeTa radiation during the formation of clouds and fog; a pulse laser based on the PeTa radiation; condensation explosions as sources of PaTa radiation; measurement of the concentration of water vapor in the atmosphere using PeTa radiation; atmospheric scintillation of infrared radiation in the atmosphere due to the PeTa effect; PeTa radiation as a source of comfort for the igloo; the influence of PeTa radiation on living organisms; PeTa radiation due to characteristics of tropical storms; PeTa radiation as a possible precursor to earthquakes. The problem of global warming, which worries everyone, as it turns out, is also associated with the PeTa effect.