Does the stromal concentration of Pi control chloroplast ATP synthase protein amount in contrasting growth environments?

Abstract
Changes in the growth environment can generate imbalances in chloroplast photosynthetic metabolism. Under water deficit, stomatal closure limits CO2 availability such that the production of ATP and NADPH by the thylakoid membrane-localized electron transport chain may not match the consumption of these energy intermediates by the stroma-localized Calvin-Benson cycle, thus challenging energy balance. Alternatively, in an elevated CO2 atmosphere, carbon fixation by the Calvin-Benson cycle may outpace the activity of downstream carbohydrate-utilizing processes, thus challenging carbon balance. Our previous studies have shown that, in both of the above scenarios, a mitochondrial alternative oxidase contributes to maintaining energy or carbon balance, highlighting the importance of photosynthesis-respiration interactions in optimizing photosynthesis in different growth environments. In these previous studies, we observed aberrant amounts of chloroplast ATP synthase protein across the different transgenic plant lines and growth conditions, compared to wild-type. Based on these observations, we develop here the hypothesis that an important determinant of chloroplast ATP synthase protein amount is the stromal concentration of inorganic phosphate. ATP synthase is a master regulator of photosynthesis. Coarse control of ATP synthase protein amount by the stromal inorganic phosphate status could provide a means to coordinate the electron transport and carbon fixation reactions of photosynthesis.

This publication has 56 references indexed in Scilit: