Advances in Conceptual Ship Design Accounting for the Risk of Environmental Pollution

Abstract
The present paper provides a thorough analysis of the prerequisites in adopting a new paradigm in the conceptual ship design accounting for the environmental pollution driven by maritime transportations. A survey of presently issued IMO environmental requirements outlines the framework within ship design solutions. Identified and carefully examined are several competing optimal design solutions, based on the energy efficiency design index introduced for shipbuilding, operation cost, and the resale costs at the end of the service life, which are used as input variables in a risk-based analysis. Reviewed are the immediate steps taken in the risk-based conceptual ship design to minimise the risk of environmental pollution while considering the life cycle assessment and energy efficiency of the ship propulsion system. Brought forth in the current paper are the results of a study into the concept design of series of containerships operating in the Black Sea for transporting 20, 40 and 45-foot containers aimed at identifying the main dimensions, capacity, visibility, freeboard, stability, bow, and stern design, propulsion complex and propeller design, control and manoeuvrability, seakeeping, energy efficiency design index, capital, and operational expenditures, that leads to the required fright rate for the ships in the range of 4,000 to 14,000 DWT. Accordingly, a bulk carrier’s risk-based concept ship design methodology is employed for the ship life cycle assessment and energy efficiency in pursuance of the optimal design solution in reference to the energy efficiency design index as most applicable to shipbuilding, operation, and resale costs at the end of the service life, and used as input variables in the risk estimate.