Rapamycin Pretreatment Rescues the Bone Marrow AML Cell Elimination Capacity of CAR-T Cells

Abstract
Purpose: Ongoing clinical trials show limited efficacy for Chimeric antigen receptor (CAR) T treatment for acute myeloid leukemia (AML). The aim of the present study was to identify potential causes of the reported limited efficacy from CAR-T therapies against AML. Experimental Design: We generated CAR-T cells targeting Epithelial cell adhesion molecule (EpCAM) and evaluated their killing activity against AML cells. We examined the impacts of modulating mTORC1 and mTORC2 signaling in CAR-T cells in terms of CXCR4 levels. We examined the effects of a rapamycin pretreatment of EpCAM CAR-T cells and assessed the in vivo antitumor efficacy of rapamycin pretreated EpCAM CAR-T cells and CD33 CAR-T cells in leukemia xenograft mouse models. Results: EpCAM CAR-T exhibited killing activity against AML cells but failed to eliminate AML cells in bone marrow. Subsequent investigations revealed that aberrantly activated mTORC1 signaling in CAR-T cells results in decreased bone marrow infiltration and decreased the levels of the rapamycin target CXCR4. Attenuating mTORC1 activity with the rapamycin pretreatment increased the capacity of CAR-T cells to infiltrate bone marrow and enhanced the extent of bone marrow AML cell elimination in leukemia xenograft mouse models. CXCR4 knockdown experiments showed that CXCR4 contributes to the enhanced bone marrow infiltration capacity of EpCAM CAR-T cells and the observed reduction in bone marrow AML cell. Conclusions: Our study reveals a potential cause for the limited efficacy of CAR-T reported from current AML clinical trials and illustrates an easy-to-implement pretreatment strategy which enhances the anti-AML efficacy of CAR-T cells.
Funding Information
  • Natural Science Foundation of China (81788101, 81872318, 82000188, 81602491)