New Search

Export article

Evaluation of Immobilization Techniques for the Fabrication of Nanomaterial-Based Amperometric Glucose Biosensors

Ruska Nenkova, Jiamin Wu, ,
Published: 31 December 2014

Abstract: Eleven glucose biosensors were prepared by cross-linking, entrapment, and layer-by-layer assembly to investigate the influence of these immobilization methods on performance. The effects of separate nanozeolites combined with magnetic nanoparticles and multiwalled carbon nanotubes in the enzyme composition on the performance of glucose biosensors were compared. Cyclic voltammetric studies were carried out on the biosensors. Acrylonitrile copolymer/nanozeolite/carbon nanotube and acrylonitrile copolymer/nanozeolite/magnetic nanoparticle electrodes prepared by a cross-linking method showed the highest electroactivity. These results indicated that a synergistic effect occurred when multiwalled carbon nanotubes, magnetic nanoparticles, and nanozeolites were combined that greatly improved the electron transfer ability of the sensors. Amperometric measurements by the glucose oxidase electrodes were obtained that showed that the acrylonitrile copolymer/nanozeolite/carbon nanotube electrode was the most sensitive (10.959 microamperes per millimolar). The lowest detection limit for this biosensor was 0.02 millimolar glucose, with a linear dynamic range up to 3 millimolar. The response after thirty days was 81 percent of the initial current.
Keywords: Cross-linking / Electropolymerization / Glucose biosensor / Layer-by-layer / Nanoparticles

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "Analytical Letters" .
References (29)
    Cited by 3 articles
      Back to Top Top