The Pembina Miscible Displacement Pilot and Analysis of Its Performance

Abstract
Published in Petroleum Transactions, AIME, Volume 219, 1960, pages 38–45. Abstract A miscible displacement pilot using a slug of LPG driven by separator gas was conducted in the Cardium reservoir of the Pembina field. The injection pattern was a 10-acre, inverted, isolated five-spot. Upon completion of the LPG-gas phase, an experiment was conducted using a slug of water followed by gas. Calculated performance of the pilot is compared with actual performance. Equations are developed to calculate the distribution of LPG into zones of varying permeability, to estimate the progress of the flood at different times in the various zones and to estimate gas rates after breakthrough. The analysis indicates that permeability stratification was a dominant factor in controlling oil recovery and that oil was completely displaced from the swept pore volume. The results of the pilot indicated that miscible flooding is a practical means of pressure maintenance in this reservoir. The total recovery from the pilot area was good in spite of the early breakthrough of LPG. The effects of stratification were reduced by injecting a slug of water into the partially swept reservoir. Introduction The Pembina field, located in Alberta, is the largest oil field in Canada and one of the largest in the North American continent. The reservoir is a stratigraphic trap producing from the Cardium sand. Neither bottom water nor free gas has been found. The recovery of oil by the natural depletion mechanism has been estimated at 12.5 per cent. Pressure maintenance studies of various areas have indicated that the recovery can be increased 2 1/2 times by water flooding, and a large area of the field is presently under water flood. However, reservoir studies of the North Pembina area indicated that miscible flooding might be competitive with water flooding. A pilot test was conducted to evaluate the performance of a miscible flood.