Target Tracking Using Reinforcement Learning and Neural Networks

Abstract
Target tracking is a process that may find applications in different domains such as video surveillance, robot navigation and human computer interaction. In this work we have considered the problem of tracking a moving object in a multi agent environment. The environment is a rectangular space bounded by walls. The first agent is the target and it moves randomly in the space. The second agent should follow the target, keeping as close as possible without crashing with it. It uses sensors to detect the position of the target. The sensor readings give the distance and the angle from the target. We use reinforcement learning to train the tracker to detect any change in the movement of the target and stay within a certain range from it. Reinforcement learning is a form of machine learning in which the agent learns by interacting with the environment. By doing so, for each action taken, the agent receives a reward from the environment, which is used to determine positive or negative behaviour. The goal of the agent is to maximise the total reward received during the interaction. This form of machine learning has applications in different areas, such as: game solving with the most known game being AlphaGO; robotics, for design of hard-to engineer behaviours; traffic light control, personalized recommendations, etc. The sensor readings may have continuous values, making a very large state space. We approximate the value function using neural networks and use different reward functions for learning the best policy.