Effects of Temperature Fluctuations on Darcy-Forchheimer Flow of Oil-Based Nanofluid with Activation Energy and Velocity Slip

Abstract
The effects of fluctuating temperature on Darcy-Forchheimer flow of oil-based nanofluid with activation energy and velocity slip has been analyzed. Similarity transformation was used to transform the governing partial differential equations into coupled nonlinear ordinary differential equations and solved numerically with the aid of the fourth order Runge-Kutta algorithm with a shooting technique. Results for the embedded parameters controlling the flow dynamics have been tabulated and illustrated graphically. The slip velocity parameter was found to enhance the Nusselt number but depleted both the skin friction coefficient and Sherwood number while the local inertial was noted to increase both the skin friction coefficient and Sherwood number but diminishes the Nusselt number. These results indicate that the velocity slip parameter and local inertial coefficient can be used to control flow characteristics in industrial and engineering systems.

This publication has 22 references indexed in Scilit: