New Search

Export article
Open Access

Real time ear recognition using deep learning

Ahmed M. Alkababji, Omar H. Mohammed
TELKOMNIKA (Telecommunication Computing Electronics and Control) , Volume 19, pp 523-530; doi:10.12928/telkomnika.v19i2.18322

Abstract: Automatic identity recognition of ear images represents an active area of interest within the biometric community. The human ear is a perfect source of data for passive person identification. Ear images can be captured from a distance and in a covert manner; this makes ear recognition technology an attractive choice for security applications and surveillance in addition to related application domains. Differing from other biometric modalities, the human ear is neither affected by expressions like faces are nor do need closer touching like fingerprints do. In this paper, a deep learning object detector called faster region based convolutional neural networks (Faster R-CNN) is used for ear detection. A convolutional neural network (CNN) is used as feature extraction. principal component analysis (PCA) and genetic algorithm are used for feature reduction and selection respectively and a fully connected artificial neural network as a matcher. The testing proved the accuracy of 97.8% percentage of success with acceptable speed and it confirmed the accuracy and robustness of the proposed system.
Keywords: artificial neural network / CNN / biometric / deep / Faster / Ear Images / Convolutional Neural

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Back to Top Top