Prediction of Mining-Induced Kinematic 3-D Displacements From InSAR Using a Weibull Model and a Kalman Filter

Abstract
Accurately predicting ground surface deformation is a crucial task in mining-related geohazards control. Interferometric synthetic aperture radar (InSAR) technique can widely detect historical line-of-sight (LOS) displacements with a high spatial resolution. By incorporating with spatio-temporal deformation models, InSAR can predict kinematic 3-D displacements due to underground mining. However, this method depends on the geometric parameters (at least seven generally) of underground mined-out areas, hindering its practical applications especially over a large area. To circumvent this, we proposed a new method for predicting kinematic 3-D mining displacements by incorporating InSAR with a temporal model, rather than spatio-temporal models used before, in this article. In doing so, much less prior parameters (only three and can be empirically given) are required, with respect to the previous InSAR-based methods. To achieve this, we first revealed that InSAR LOS displacements caused by underground longwall mining at a single point temporally follow an S-shaped growth pattern. Meanwhile, we also showed that a Weibull model can describe the temporal evolution well. Based on these findings, the proposed method first predicts, in a point-wise manner, the kinematic LOS mining displacements from historical InSAR measurements using the Weibull model and a Kalman filter. The kinematic 3-D displacements are then resolved from the predicted LOS displacements with the help of a common prior information relating to mining deformation. The proposed method was tested in the Datong coal mining area of north China. The results show an averaged accuracy of about 0.007 m of the resolved kinematic 3-D displacements.
Funding Information
  • National Science Fund for Distinguished Young Scholars (41925016)
  • National Natural Science Foundation of China (41904005)
  • Natural Science Foundation of Hunan Province, China (2020JJ4699)
  • Research Foundation of Education Bureau of Hunan Province, China (20K134)