Abstract
The characterization of low-affinity protein complexes is challenging due to their dynamic nature. Here we present a method to stabilize transient protein complexes in vivo by generating a covalent and conformationally flexible bridge between the interaction partners. A highly active pyrrolysyl tRNA synthetase mutant directs the incorporation of unnatural amino acids bearing bromoalkyl moieties (BrCnK) into proteins. We demonstrate for the first time that low-affinity protein complexes between BrCnK-containing proteins and their binding partners can be stabilized in vivo in bacterial and mammalian cells. Using this approach we determined the crystal structure of a transient GDP-bound complex between a small G-protein and its nucleotide exchange factor. We envision that this approach will prove valuable as a general tool for validating and characterizing protein-protein interactions in vitro and in vivo. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.