
A Distribution-Free Model for Longitudinal Metagenomic Count Data
Genes
,
Volume 13; https://doi.org/10.3390/genes13071183
Abstract: Longitudinal metagenomics has been widely studied in the recent decade to provide valuable insight for understanding microbial dynamics. The correlation within each subject can be observed across repeated measurements. However, previous methods that assume independent correlation may suffer from incorrect inferences. In addition, methods that do account for intra-sample correlation may not be applicable for count data. We proposed a distribution-free approach, namely CorrZIDF, which extends the current method to model correlated zero-inflated metagenomic count data, offering a powerful and accurate solution for detecting significance features. This method can handle different working correlation structures without specifying each margin distribution of the count data. Through simulation studies, we have shown the robustness of CorrZIDF when selecting a working correlation structure for repeated measures studies to enhance the efficiency of estimation. We also compared four methods using two real datasets, and the new proposed method identified more unique features that were reported previously on the relevant research.
Keywords: metagenomic / microbial / longitudinal / zero-inflated count model / correlation structure / distribution-free
Scifeed alert for new publications
Never miss any articles matching your research from any publisher- Get alerts for new papers matching your research
- Find out the new papers from selected authors
- Updated daily for 49'000+ journals and 6000+ publishers
- Define your Scifeed now
Click here to see the statistics on "Genes" .