Abstract
We synthesized Ni/Si-codoped TiO2 nanostructures for photoelectrochemical (PEC) water splitting, by electrochemical anodization of Ti-1Ni-5Si alloy foils in ethylene glycol/glycerol solutions containing a small amount of water. The effects of annealing temperature on PEC properties of Ni/Si-codoped TiO2 photoanode were investigated. We found that the Ni/Si-codoped TiO2 photoanode annealed at 700 °C had an anatase-rutile mixed phase and exhibited the highest photocurrent density of 1.15 mA/cm2 at 0 V (vs. Ag/AgCl), corresponding to a photoconversion efficiency of 0.70%, which was superior to Ni-doped and Si-doped TiO2. This improvement in PEC water splitting could be attributed to the extended light absorption, faster charge transfer, possibly lower charge recombination, and longer lifetime.
Funding Information
  • National Natural Science Foundation of China (No. 51572170)