Bimetallic Zinc Catalysts for Ring-Opening Copolymerization Processes

Abstract
Novel bimetallic zinc acetate complexes supported by heteroscorpionate ligands have been developed for the ring-opening copolymerization of cyclohexene oxide and CO2 and the terpolymerization of cyclohexene oxide, phthalic anhydride, and CO2. Heteroscorpionate ligands precursors L1–L3 were reacted with two equivalents of zinc acetate to afford the dinuclear zinc complexes [{Zn(κ3-bpzappe)}(μ-O2CCH3)3-{Zn(HO2CCH3)}] (1), [{Zn(κ3-bpzbdmape)}(μ-O2CCH3)3-{Zn(HO2CCH3)}] (2), and [{Zn(κ3-bpzbdeape)}(μ-O2CCH3)3{Zn(HO2CCH3)}] (3) in excellent yields. The molecular structure of these compounds was determined spectroscopically and confirmed by X-ray diffraction analysis. Zinc acetate complexes 1–3 were screened as catalysts for the copolymerization of cyclohexene oxide and CO2 to produce poly(cyclohexene)carbonate, and complex 3 was found to be the most active catalyst for this process in the absence of a cocatalyst. Furthermore, the terpolymerization of cyclohexene oxide, phthalic anhydride, and CO2 was studied using the combination of complex 3 and 4-dimethylaminopyridine as catalyst system yielding the corresponding polyester-polycarbonate materials.
Funding Information
  • Ministerio de Econom?a, Industria y Competitividad, Gobierno de Espa?a (CTQ2016-81797-REDC, CTQ2017-84131-R, RED2018-102387-T)
  • Ministerio de Educaci?n, Cultura y Deporte
  • Fondo Nacional de Desarrollo Cient?fico y Tecnol?gico (3180073)