Membrane and organelle dynamics during cell division

Abstract
During division, eukaryotic cells undergo a dramatic, complex and coordinated remodelling of their cytoskeleton and membranes. For cell division to occur, chromosomes must be segregated and new cellular structures, such as the spindle apparatus, must be assembled. Pre-existing organelles, such as the nuclear envelope, endoplasmic reticulum and Golgi apparatus, must be disassembled or remodelled, distributed and reformed. Smaller organelles such as mitochondria as well as cytoplasmic content must also be properly distributed between daughter cells. This mixture of organelles and cytoplasm is bound by a plasma membrane that is itself subject to remodelling as division progresses. The lipids resident in these different membrane compartments play important roles in facilitating the division process. In recent years, we have begun to understand how membrane remodelling is coordinated during division; however, there is still much to learn. In this Review, we discuss recent insights into how these important cellular events are performed and regulated. During cell division, the distribution of membrane-bound organelles needs to be tightly regulated to ensure the proper composition and function of daughter cells. Recent studies have shed light on the range of complex and dynamic mechanisms needed to mediate organelle inheritance and membrane remodelling during cell division.