Effects of temperature and PM2.5 on the incidence of hand, foot, and mouth in a heavily polluted area, Shijiazhuang, China

Abstract
The influence of weather and air pollution factors on hand, foot, and mouth disease (HFMD) has received widespread attention. However, most of the existing studies came from lightly polluted areas and the results were inconsistent. There was a lack of relevant evidence of heavily polluted areas. This study aims to quantify the relationship between weather factors and air pollution with HFMD in heavily polluted areas. We collected the daily number of hand, foot, and mouth disease in Shijiazhuang, China from 2014 to 2018, as well as meteorological and air pollutant data over the same period. The generalized linear model combined with the distributed lag model was used to study the effect of meteorological factors and air pollutants on the daily cases of HFMD and its hysteresis effect. We found that the dose-response relationship between temperature, PM2.5, and the risk of hand-foot-mouth disease was non-linear. Both low temperature and high temperature increased the risk of hand-foot-mouth disease. The cumulative effect of high temperature reached the maximum at 0–10 lag days, and the cumulative effect of low temperature reached the maximum at 0–3 lag days. The concentration of PM2.5 between 76 and 200 μg/m3 has a certain risk of the onset of hand, foot, and mouth disease, but the extreme PM2.5 concentration has a certain protective effect. In addition, low humidity, low wind speed, and low-O3 can increase the risk of HFMD. Risks of humidity and low concentration of O3 increased as lag days extended. In conclusion, our study found that climate factors and air pollutants exert varying degrees of impact on HFMD. Our research provided the scientific basis for establishing an early warning system so that medical staff and parents can take corresponding measures to prevent HFMD.