Osteochondrogenesis derived from synovial fibroblasts in inflammatory arthritis model

Abstract
Rheumatoid arthritis (RA) is characterized by chronic joint inflammation, which forms pannus with bone destruction. Bony ankylosis is also observed following inflammation; however, the mechanism behind this aberrant bone formation in RA had remained unclear. Based on our recent findings obtained using a novel arthritis model called D1BC mouse, we found that synovial fibroblasts in pannus consist of at least three different populations with the osteochondrogenic lineage being predominant. We also found endochondral ossification like that in embryonic bone development adjacent to invasive synovial fibroblasts. Such ectopic endochondral ossification leads to the failure of bone repair and results in ankylosis. In this review, we describe the character of synovial fibroblasts toward the osteochondrogenic lineage and ectopic endochondral ossification in an inflammatory arthritis mouse model.