Enzymatic Synthesis and Crosslinking of Novel High Molecular Weight Polyepoxyricinoleate

Abstract
Methyl epoxyricinoleate was prepared in high yield by the lipase-catalyzed epoxidation of methyl ricinoleate with H2O2. A high molecular weight polyepoxyricinoleate (PER) with a maximum weight average molecular weight (Mw) of 272,000 was enzymatically prepared by the polycondensation of methyl epoxyricinoleate using immobilized lipase from Burkholderia cepacia (lipase PS-IM) in bulk at 80 °C for 5 d. PER showed good low temperature fluidability. PER was readily cured by maleic anhydride (MA) at 80 °C to produce a chloroform-insoluble PER-MA film. Both the glass transition temperature and Young’s modulus increased with increasing MA content and PER Mw. In contrast, the elongation at break decreased with increasing MA content and PER Mw. Methyl epoxyricinoleate, PER and PER-MA showed biodegradability by activated sludge, and that of the PER-MA film decreased with increasing MA content.