New Search

Export article

Sorption, desorption and degradation of neonicotinoids in four agricultural soils and their effects on soil microorganisms

Peng Zhang, Chao Ren, , Lujuan Min
Published: 1 February 2018

Abstract: In this study, the sorption, desorption and degradation of three neonicotinoids, imidacloprid (IMI), clothianidin (CLO) and thiacloprid (THI), and their effects on microorganisms in four different agricultural soils were systematically evaluated. The sorption of neonicotinoids on the soils was generally low with distribution coefficients (K) up to 16.2L/kg at C of 0.05mg/L following the order THI>IMI≈CLO, and the sorption were mainly influenced by the soil organic carbon content. The percentage degradation rates of the pesticides in different soils ranged from 25.4% to 80.9%, all following the order THI>IMI≈CLO. All the three neonicotinoids degraded much faster under non-sterilized conditions than sterilized conditions, indicating considerable contribution of biodegradation. The total degradation or biodegradation of neonicotinoids was the fastest in the soil with the highest organic carbon content, and the neonicotinoids' bioavailability was not the primary influencing factor due to their weak sorption. The chemical degradation was mainly affected by pH and cation exchange capacity. The degradation of neonicotinoids occurred mainly via nitrate reduction, cyano hydrolysis and chloropyridinyl dechlorination. High-throughput sequencing data showed that the microbial community structure and abundance changed greatly in neonicotinoid-spiked soils as compared to the control, which might influence their degradation pathways. Some microbe families associated with the biodegradation of neoniconoids were found, which were all belonging to Proteobacteria and Actinobacteria. The degradation of neoniconoids influenced the soil nitrifying process. The present study provides valuable information for comprehensively understanding the fate of neonicotinoids in soils.
Keywords: Degradation / Degradation pathways / Desorption / Neonicotinoids / Soil microorganism community / Sorption

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "Science of the Total Environment" .
References (68)
    Cited by 106 articles
      Back to Top Top