Abstract
The feasibility of an additional ligand coordination at the 11th coordination site of actinium, lanthanum, and lutetium ions in 10-fold coordinated macropa complexes has been studied by means of density functional theory calculations. The study covered the two main macropa conformers, Δ(δλδ)(δλδ) and Δ(λδλ)(λδλ), favoured by larger (Ac3+, La3+) and smaller (Lu3+) ions, respectively. At the molecular level, the coordination of H2O is the most favourable to the largest Ac3+ while only slightly less to La3+. Protonation of the picoline arms enhances the coordination by shifting the metal ion closer to the open site of the ligand. The choice of macropa conformer has only a slight influence on the strength and bonding properties of the H2O coordination. Aqueous solution environment decreases considerably the energy gain of H2O coordination at the 11th coordination site.

This publication has 64 references indexed in Scilit: