Comparative root transcriptome analysis of two soybean cultivars with different cadmium sensitivities reveals the underlying tolerance mechanisms

Abstract
The soybean can provide rich protein and fat and has great economic value worldwide. Cadmium (Cd) is a toxic heavy metal to organisms. It can accumulate in plants and be transmitted to the human body via food chain. Cd is a serious threat to soybean development, especially to root growth. Some soybean cultivars present tolerant symptoms under Cd stress; however, the potential mechanisms are not fully understood. Here, we optimized RNA-seq to identify the differentially expressed genes (DEGs) in Cd-sensitive (KUAI) and Cd-tolerant (KAIYU) soybean roots and compared the DEGs between KAIYU and KUAI. A total of 1,506 and 1,870 DEGs were identified in the roots of KUAI and KAIYU, respectively. Through Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and gene function analyses, we found that genes related to antioxidants and sequestration were responsible for Cd tolerance in KAIYU. In addition, overexpression of Glyma11g02661, which encodes a heavy metal transporting ATPase, significantly improved Cd tolerance in transgenic hairy roots. These results provide a preliminary understanding of the tolerance mechanisms in response to Cd stress in soybean root development and are of great importance in developing Cd-resistant soybean cultivars by using the identified DEGs through genetic modification.