Abstract
Understanding, quantifying, and forecasting water flow and its behavior in environment is made possible by the use of computational hydraulics in conjunction with numerical models, which is one of the most powerful tools currently available. It is made up of simple to complex mathematical equations having linear and/or nonlinear elements, as well as ordinary and partial differential equations, and it is used to solve problems in many areas. In the vast majority of cases, it is not useful to reach analytical solutions to these mathematical equations using conventional methods. In these settings, mathematical models are solved by employing a variety of numerical algorithms and associated schemes. As a result, in this manuscript, we will cover the most fundamental numerical approach, the Finite Difference Method (FDM), in order to reformulate the governing equations for water and sediment flow from a system of partial differential equations to a system of linear equations. As part of our analysis into the inner workings of a computer program known as MIKE 21C, we will attempt to gain a better understanding of the hydrodynamic processes that take place in major rivers in Bangladesh. In addition to that, we will go over some of the most commonly used morphological studies that have been conducted on Bangladesh’s major rivers, including morphological solutions that have been developed in response to water supply concerns.