Influence of Cu(NO3)2 content used in thermal shock method on the photocatalytic activity of Cu-Modified ZnO nanoparticles

Abstract
The Cu doped ZnO photocatalysts were prepared on ZnO substrate modified with copper nitrate by thermal shock method with different ratio % molar Cu : Zn = 0.3, 0.5, 1.0, 2.0 and 5.0 in order to study the impacts of copper content on the photocatalytic activity of ZnO under both UV and Vis light irradiation. The crystal structure, morphology bulk and surface were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Their photocatalytic activities were studied via time-dependent degradation of methylene blue in aqueous solution. The results exhibit that crystal structure and morphology of Cu doped ZnO photocatalysts is not modified significally than ZnO original but surface charateristicschanged greatly. The photocatalyst was doped with copper content under 2% showed formation of Cu species. These samples perform photocatalytic activity higher than ZnO. The CuNZO-0.05-500 had the highest rate constants for methylene blue degradation (kUV = 6,901 h-1, kVIS = 0,224 h-1), which are about 2.2 times and 1.3 times higher than unmodified ZnO under UV light and Vis light, respectively. However, the CuNZO-5.0-500 which had the formation of CuO phase and unchangeable ZnO's surface has photocatalytic activity similar to pure ZnO.
Funding Information
  • National Foundation for Science and Technology Development (104.03-2016.43)