Acute Hyperglycemia Increases Brain Pregenual Anterior Cingulate Cortex Glutamate Concentrations in Type 1 Diabetes

Abstract
The brain mechanisms underlying the association of hyperglycemia with depressive symptoms are unknown. We hypothesized that disrupted glutamate metabolism in pregenual anterior cingulate cortex (ACC) in type 1 diabetes (T1D) without depression affects emotional processing. Using proton MRS, we measured glutamate concentrations in ACC and occipital lobe cortex (OCC) in 13 subjects with T1D without major depression (HbA1c 7.1 ± 0.7% [54 ± 7 mmol/mol]) and 11 healthy control subjects without diabetes (HbA1c 5.5 ± 0.2% [37 ± 3 mmol/mol]) during fasting euglycemia followed by a 60-min +5.5 mmol/L hyperglycemic clamp (HG). Intrinsic neuronal activity was assessed using resting-state blood oxygen level–dependent functional MRI to measure the fractional amplitude of low-frequency fluctuations in slow-4 band (fALFF4). Emotional processing and depressive symptoms were assessed using emotional tasks (emotional Stroop task, self-referent encoding task [SRET]) and clinical ratings (Hamilton Depression Rating Scale [HAM-D], Symptom Checklist-90 Revised [SCL-90-R]), respectively. During HG, ACC glutamate increased (1.2 mmol/kg, 10% P = 0.014) while ACC fALFF4 was unchanged (−0.007, −2%, P = 0.449) in the T1D group; in contrast, glutamate was unchanged (−0.2 mmol/kg, −2%, P = 0.578) while fALFF4 decreased (−0.05, −13%, P = 0.002) in the control group. OCC glutamate and fALFF4 were unchanged in both groups. T1D had longer SRET negative word response times (P = 0.017) and higher depression rating scores (HAM-D P = 0.020, SCL-90-R depression P = 0.008). Higher glutamate change tended to associate with longer emotional Stroop response times in T1D only. Brain glutamate must be tightly controlled during hyperglycemia because of the risk for neurotoxicity with excessive levels. Results suggest that ACC glutamate control mechanisms are disrupted in T1D, which affects glutamatergic neurotransmission related to emotional or cognitive processing. Increased prefrontal glutamate during acute hyperglycemic episodes could explain our previous findings of associations among chronic hyperglycemia, cortical thinning, and depressive symptoms in T1D.
Funding Information
  • National Institute of Diabetes and Digestive and Kidney Diseases (R01-DK-084202)
  • Harvard Catalyst (UL1-TR-001102)
  • National Center for Research Resources (UL1-RR-025758)