Self-similar mesocrystals form via interface-driven nucleation and assembly

Abstract
Crystallization by particle attachment (CPA) is a frequently occurring mechanism of colloidal crystallization that results in hierarchical morphologies1,2,3,4. CPA has been exploited to create nanomaterials with unusual properties4,5,6 and is implicated in the development of complex mineral textures1,7. Oriented attachment7,8—a form of CPA in which particles align along specific crystallographic directions—produces mesocrystals that diffract as single crystals do, although the constituent particles are still discernible2,9. The conventional view of CPA is that nucleation provides a supply of particles that aggregate via Brownian motion biased by attractive interparticle potentials1,9,<a data-track="click" data-track-action="reference...