Upregulation of microRNA-31 targeting integrin α5 suppresses tumor cell invasion and metastasis by indirectly regulating PI3K/AKT pathway in human gastric cancer SGC7901 cells

Abstract
To verify the hypothesis that upregulation of microRNA-31 (miR-31) targeting integrin α5 (ITGA5) suppresses tumor cell invasion and metastasis by indirectly regulating phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway in human SGC7901 gastric cancer (GC) cells. The miRTarBase was used to predict whether ITGA5 is the target gene of miR-31, which was further confirmed by luciferase reporter gene assay. The SGC7901 GC cells were divided into five groups including the blank, miR-31 mimic, miR-31 mimic control, miR-31 inhibitor, and miR-31 inhibitor control groups. Reverse transcriptase-polymerase chain reaction (RT-PCR), western blotting, cell scratch test, and transwell assays were respectively performed in our study. TGA5 was found as the target gene of miR-31. The RT-PCR detection revealed that, compared with the blank group, ITGA5 messenger RNA (mRNA) expression decreased in the miR-31 mimic group, but increased in the miR-31 inhibitor group. The western blotting examination suggested that the expressions of ITGA5, PI3K, and AKT proteins reduced in the miR-31 mimic group, but enhanced in the miR-31 inhibitor group when compared to the blank group, respectively. The cell scratch and transwell assays indicated that the miR-31 expressions were negatively associated with GC cell migration and invasion. Besides, RT-PCR combined with western blotting demonstrated that the miR-31 expressions were higher in the normal tissues than those in the GC tissues, while the ITGA5 mRNA and protein showed lower expression in the normal tissues than they did in the GC tissues. Our study concluded that upregulation of miR-31 targeting ITGA5 may suppress tumor cell invasion and metastasis by indirectly regulating PI3K/AKT signaling pathway in human SGC7901 GC cells.

This publication has 29 references indexed in Scilit: