New techniques for a measurement of the electron’s electric dipole moment

Abstract
The electric dipole moment of the electron (eEDM) can be measured with high precision using heavy polar molecules. In this paper, we report on a series of new techniques that have improved the statistical sensitivity of the YbF eEDM experiment. We increase the number of molecules participating in the experiment by an order of magnitude using a carefully designed optical pumping scheme. We also increase the detection efficiency of these molecules by another order of magnitude using an optical cycling scheme. In addition, we show how to destabilise dark states and reduce backgrounds that otherwise limit the efficiency of these techniques. Together, these improvements allow us to demonstrate a statistical sensitivity of 1.8 x 10(-28) e cm after one day of measurement, which is 1.2 times the shot-noise limit. The techniques presented here are applicable to other high-precision measurements using molecules.
Funding Information
  • Royal Society
  • Science and Technology Facilities Council (ST/N000242/1 ST/S000011/1)
  • John Templeton Foundation (61104)
  • Gordon and Betty Moore Foundation (8864)
  • Alfred P. Sloan Foundation (G-2019-12505)