Modeling on Metabolic Rate and Thermoregulation in Three Layered Human Skin during Carpentering, Swimming and Marathon

Abstract
Metabolisms play a vital role in thermoregulation in the human body. The metabolic rate varies with the activity levels and has different behaviors in nature depending on the physical activities of the person. During the activity, metabolic rate increases rapidly at the beginning and then increases slowly to become almost constant after a certain time. So, its behavior is as logistics in nature. The high metabolic rate during activity causes the increase of body core temperature up to 39˚C [1] [2]. The logistic model of metabolic rate is used to re-model Pennes’ bioheat equation for the study of temperature distribution in three layered human dermal parts during carpentering, swimming and marathon. The finite element method is used to obtain the solution of the model equation. The results demonstrate that there is a significant change in tissue temperature due to sweating and ambient temperature variations.