INTEGRATION OF MODERN TECHNOLOGY FOR ARCHITECTURAL-BUILDING GLASS PRODUCTION

Abstract
The current state of technologies for the production of glass products used in the architectural and construction industry, types of the energy-saving float-glasses and their role in the lighting quality of the buildings was analyzed. The relevance of the use of Low-E glass, in particular in the glass units, is shown. Innovative trends in the production of sheet architectural and construction float glass with the use of modern technologies and equipment, in particular, at PJSC "Lysychansk glass factory "Proletary ", considered. It is established that a significant disadvantage of more energy-efficient I-glasses, which have a wide range of color characteristics, is the insufficient mechanical strength of soft coatings applied by magnetron vacuum spraying. It is shown that the technology of manufacturing low-emission I-glasses with such coatings does not allow them to be hardened while maintaining all the necessary operating parameters. Physicochemical properties and operational characteristics of large-sized glasses with silver, sunscreen soft coating, laminated, flat and radial tempered glasses, as well as their areas of application are presented. The principles of strengthening soft magnetron coatings for low-emission Double Low-E glasses and composition, layer combinations and technological parameters of multilayer nanocoatings with a total thickness of up to 140 nm, which allows to harden I-glass with these coatings, investigated. The technological parameters of obtaining low-emission I-glasses with variable coatings, which regulate the spectral and operational indicators of these glassware according to the interstate standards GOST EN 673-2016 and GOST EN 410-2014, are analyzed. Technological methods of the sheet glass with low-emission coatings hardening by creating of the special compositions and optimizing magnetron sputtering processes optimizing, as well as the basic regularities of the arrangement of the film layers of the Si3N4 / NiCr / Si3N4 film for the heat treatment withstanding of the glasses in the R2O – RO – SiO2 system are considered. The principles of adjusting their spectral and mechanical characteristics depending on the concentration and ratio of the components of the thin-film nanolayer, which will contribute to the creation of a variation series of float glasses with the required level of reflection in the infrared spectrum, are proposed.