Synthesis of MoS x /Ni‐metal‐organic framework‐74 composites as efficient electrocatalysts for hydrogen evolution reactions

Abstract
The development of low‐cost and stable materials presents a challenging task for the electrocatalytic hydrogen evolution reaction (HER). In this work, we developed a facile strategy to fabricate efficient catalysts by incorporating amorphous molybdenum sulfide (MoSx) and Ni‐metal‐organic framework (MOF)‐74 via a solvothermal process. Owing to the formation of NiMoS phases that decrease the hydrogen adsorption energy on the catalysts, the MoSx/Ni‐MOF‐74 based catalysts deliver excellent hydrogen generation performance in acidic media. In particular, an optimal MoSx/Ni‐MOF‐74 with an amount of 40 wt% MoSx exhibited the best HER performance with a low onset voltage of −114 mV and a small Tafel slope of 53.1 mV dec−1. In addition, the stability of the catalyst was maintained for over 2000 cycles with a slight shift in performance. These results imply that the MoSx/Ni‐MOF‐74 composite is a promising candidate for the development of non‐expensive catalysts for hydrogen production using the electrochemical method.
Funding Information
  • National Research Foundation of Korea (NRF‐2017M3D1A1039379)