Multiple environmental factors regulate the large-scale patterns of plant water use efficiency and nitrogen availability across China’s forests

Abstract
Global changes, e.g. global warming, elevated nitrogen deposition, and shifts of precipitation regime, exert a major influence on forests via affecting plant water use efficiency (WUE) and plant nitrogen (N) availability. Large-scale ecological sampling can help us to better understand variation across regions and provide opportunities to investigate the potential impacts of multiple aspects of global change on forest ecosystem responses. Here, we determine the geographical patterns of key isotopic measures of ecosystem function—plant WUE (calculated from foliar δ 13C values) and plant N availability (assessed by foliar δ 15N values)—across China’s forests covering ∼21 latitude (∼22–43°N) and ∼28 longitude (∼93–121°E) degree, and investigate how a suite of soil, plant, and atmospheric factors regulate them. We found that plant WUE increased but N availability decreased with latitude, while plant WUE and N availability did not vary with longitudinal gradient. Different factors regulate the large-scale patterns in WUE and N availability. The mean annual temperature, atmospheric N deposition, and soil water content exhibit considerable effects on plant WUE over both the north-to-south and east-to-west transects, while the mean annual precipitation, soil potassium content, foliar N, and precipitation seasonality considerably affect the latitudinal patterns of plant N availability. In addition, the east-to-west spatial pattern in plant N availability is associated with the variation in solar radiation. Our results suggest that key forest ecological functions respond to an array of environmental factors, and imply that changes in many different environmental attributes need to be considered in order to successfully assess plant WUE and N availability responses to global changes this century.
Funding Information
  • The National Natural Science Foundation of China (No. 41471443)
  • The Strategic Priority Research Program of Chinese Academy of Sciences (No. XDA13020604)
  • the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (No. GML2019ZD0408)

This publication has 69 references indexed in Scilit: