IMPAD1 and KDELR2 drive invasion and metastasis by enhancing Golgi-mediated secretion

Abstract
Non-small cell lung cancer (NSCLC) is the deadliest form of cancer worldwide, due in part to its proclivity to metastasize. Identifying novel drivers of invasion and metastasis holds therapeutic potential for the disease. We conducted a gain-of-function invasion screen, which identified two separate hits, IMPAD1 and KDELR2, as robust, independent drivers of lung cancer invasion and metastasis. Given that IMPAD1 and KDELR2 are known to be localized to the ER-Golgi pathway, we studied their common mechanism of driving in vitro invasion and in vivo metastasis and demonstrated that they enhance Golgi-mediated function and secretion. Therapeutically inhibiting matrix metalloproteases (MMPs) suppressed both IMPAD1- and KDELR2-mediated invasion. The hits from this unbiased screen and the mechanistic validation highlight Golgi function as one of the key cellular features altered during invasion and metastasis.
Funding Information
  • U.S. Department of Health & Human Services | NIH | National Cancer Institute (K08 CA151651)
  • United States Department of Defense | United States Army | Army Medical Command | Congressionally Directed Medical Research Programs (W81XWH-12-16294)
  • U.S. Department of Health & Human Services | National Institutes of Health (R37CA214609)